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Crisis and topological entropy
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Topological entropy characterizes the complexity of a dissipative system. Crisis means a sudden col-
lapse in the size of a chaotic attractor or sudden destruction of a chaotic attractor. In this paper, we il-
lustrate that at some interior crises of a dissipative system topological entropy makes a discontinuous
change. This intrinsic feature indicates the onset of a crisis in dissipative systems. Using examples of ex-
citable cell models, we estimated topological entropy in terms of the associated Poincaré maps and
showed that the topological entropy changes discontinuously when an interior crisis occurs. We also
show that at this crisis two opposite bifurcation processes, with very different dynamical complexities,
collide with each other in these dissipative systems, and that the collision gives rise to the occurrence of

the crisis in a continuous dynamical system.

PACS number(s): 05.45.+b

Sudden qualitative changes in chaotic dynamical
behavior have been observed in dissipative systems, such
as those that occur in plasmas, fluids, stochastic reso-
nance, and excitable cell systems [1]. Such sudden
changes have been termed crises [2], and include bound-
ary crisis and interior crisis. At the crisis, certain charac-
teristic statistical behavior of a dissipative system occurs.
For example, the number of unstable periodic orbits em-
bedded within a chaotic attractor suddenly increases or
decreases at the crisis [3,4]. Accordingly, the complexity
of a dissipative system will change at the crisis. Tradi-
tionally, the Lyapunov exponent and the topological en-
tropy are used to indicate the complexity of dissipative
systems. In this paper, we show that for some crisis phe-
nomena the Lyapunov exponent no longer provides con-
vincing evidence, and we illustrate that the topological
entropy for a chaotic system makes a discontinuous
change at the crisis. This intrinsic feature may provide
evidence for the crisis. Using examples of excitable cell
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models in the Appendix (which include the Rose-
Hindmarsh model for neuron cell activity and the Chay
model for pancreatic B-cell activity), we estimate the to-
pological entropy in terms of the associated Poincaré
maps of these systems. It turns out that the topological
entropy for these systems makes a discontinuous change
at the crisis. That is, as a system parameter passes
through a threshold value, the complexity of the systems
suddenly increases or decreases. Such a sudden change in
the complexity of a dissipative system (or discontinuous
change in its topological entropy) indicates the oc-
currence of the crisis in these continuous dynamical sys-
tems.

CRISIS TRANSITION BETWEEN DIFFERENT CHAOS

The bifurcation diagrams in Figs. 1(a) and 1(b) are ob-
tained by numerically integrating Eq. (A1), in the Appen-
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FIG. 1. Bifurcation diagrams obtained by integrating Eq. (A1), (a) for I =3.281 with r as the bifurcation parameter, and (b) the en-
largement of the part of (a) over the interval of » €[0.0016, 0.001 72] indicated by a bar in (a). They both show that a crisis occurs at
r.=0.001 673 and two opposite bifurcation processes collide with each other at the crisis.

1063-651X/95/51(2)/1012(8)/$06.00 51

1012 ©1995 The American Physical Society



51 CRISIS AND TOPOLOGICAL ENTROPY 1013

dix. The diagrams show that an apparent sudden col-
lapse in the size of a chaotic attractor occurs at a value of
the parameter » =0.001 673 (denoting the crisis value by
r.). Such a sudden qualitative change in a chaotic attrac-
tor is known as interior crisis [2]. To compare the struc-
tures of chaotic attractors in the right and left of the
crisis point, we illustrate a chaotic attractor for
r=0.001672 ( <r,, slightly) in Fig. 2(a), and a chaotic at-
tractor for »=0.001674 (> r,, slightly) in Fig. 2(b), re-
spectively. The structure of the chaotic attractor in Fig.
2(a) is very similar to that of the top part of the attractor
in Fig. 2(b), but it is qualitatively different from the struc-
ture of the whole attractor in Fig. 2(b). At the crisis, the
chaotic attractor dramatically extends or shrinks in size.
That is, at the crisis, the qualitative structure of the

chaotic attractor is suddenly changed. The attractor
J

shown in Fig. 2(a) corresponds to chaotic spiking (only
fast irregular oscillations); the chaotic attractor shown in
Fig. 2(b) corresponds to chaotic bursting (between spikes
there are some slow periods or plateaus of action poten-
tial x). This crisis, occurring at r,, bridges two different
types of chaos, chaotic spiking and chaotic bursting.

For r>r,, numerical computation gives the (saddle-
node) bifurcation values: r;=0.01025, r,=0.00649,
rs=0.00502, rs=0.00424, r,=0.00371, rz3=0.003 31,
re=0.00298, r,,=0.0027, r,; =0.002 46, r,, =0.002 25,
r;3=0.002 065, r,,=0.001 895, r,;5;=0.001 727, at which
the system of Eq. (A1) yields superstable period 3, 4,...,
15, respectively. So, before the crisis (r >r,) and as the
parameter r is decreased the system evolves in the follow-
ing way:

period 3— period-doubling cascades and chaos— saddle-node bifurcation—

period 4— period-doubling cascades and chaos— saddle-node bifurcation—

period 5— period-doubling cascades and chaos—saddle-node bifurcation—

period 15— period-doubling cascades and chaos—

crisis.

We note in Fig. 1(a) that the right part of the bifurcation diagram, where the period-3 window exhibits, is omitted.
During the above process, the period of superstable periodic orbit is increased as r is decreased.

For r <r,, the system undertakes saddle-node bifurcations at 3 =0.001 52 and r} =0.001 632 5, at which the system
generates superstable period 3 and period 4, respectively. So, after the crisis (r <r.) and as the parameter r is decreased

further, the system evolves in an inverse bifurcation process:

crisis—chaos and inverse period-doubling bifurcation [5,6]—

period 3—inverse saddle-node bifurcation—chaos and inverse period-doubling bifurcation—

period 2—

period 1.

During the inverse bifurcation process, the period of the
superstable periodic orbits is decreased as the parameter
decreases. Evidently, two opposite bifurcation processes
collide with each other at the crisis point (r=r,). We
will subsequently see that the complexities of the dynami-
cal system are quite different before and after the crisis.

In this situation, it is impossible for the physical dissipa-
tive system to evolve smoothly from one chaotic regime
to another completely different chaotic regime. For ex-
ample, the system of Eq. (A1) does not evolve smoothly
from chaotic bursting to chaotic spiking. Thus, a crisis
occurs between these two chaotic regimes, chaotic spik-

FIG. 2. Chaotic attractors obtained by in-
tegrating Eq. (Al), (a) for I=3.281 and
r=0.001 672, slightly left of the crisis point;
(b) for I=3.281 and r=0.001674, slightly
right of the crisis point.
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FIG. 3. Bifurcation diagrams obtained by integrating Eq.
(A2), (a) for A, =236 with ggx ¢ as the bifurcation parameter;
and (b), the enlargement of the part of (a) over the interval
8k,c €[10.3,10.4], show a crisis occurs at glzc=10.3625 and
two opposite bifurcation processes collide with each other at the
crisis.

ing and chaotic bursting, at the threshold value r,. This
is an example of a crisis transition between two different
chaotic regimes in a physical dissipative system.

Such a crisis phenomenon is also observed in pancreat-
ic B-cell model, Eq. (A2) in the Appendix. The bifurca-
tion diagrams in Figs. 3(a) and 3(b) show that a crisis
occurs at a value gg - =10.3625. Similar to that in the
system of Eq. (A1), this crisis makes a transition between
two different chaotic regimes, and is formed by a collision
between opposite bifurcation processes with quite
different complexities at the threshold value of
8k c =10.3625.

LYAPUNOYV EXPONENT MAY NOT BE EVIDENCE
FOR SUCH A CRISIS

Traditionally, the Lyapunov exponent is used to indi-
cate the complexity of a chaotic dynamical system.
Preferably, it is used to distinguish a periodic behavior
from chaos. Nevertheless, the Lyapunov exponent is
hard to distinguish two different types of chaos, such as

chaotic bursting and chaotic spiking. In particular, the
Lyapunov exponent will not provide convincing evidence
for the crisis transition between two different types of
chaos. To support this point, we present the Lyapunov
exponent spectra in Fig. 4(a) for Eq. (A1), with the same
parameters as in Fig. 1(a). It gives clear diagnoses for bi-
furcations and chaos, but not for the crisis at » =r,. Over
the intervals on which the system exhibits chaos, the
Lyapunov exponent  spectra takes a  form
(A,A9,A3)=(+,0,—); over the intervals in which the
system exist stable periodic orbits, the Lyapunov ex-
ponent spectra takes a form (A,A,,A;)=(0,—,—); at
each saddle-node bifurcation, the largest Lyapunov ex-
ponent A; changes from positive to zero, and the second
largest exponent A, changes from zero to negative; at
each period-doubling bifurcation, A, approaches the line
of A=0. However, the Lyapunov exponent spectra does
not provide any signs for the crisis at » =r,, as shown in
Figs. 4(a) and 4(b) (an enlargement of 4(a) over the inter-
val of r&[0.0016, 0.0017] which is marked in 4(a)).
This failure shows that the Lyapunov exponent is not
able to distinguish different chaotic regimes and does not
provide convincing evidence for the crisis between the
two different types of chaos. To provide convincible evi-
dence of such interior crisis, we will now estimate topo-
logical entropy in terms of the associated Poincaré maps
of the dissipative system.
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FIG. 4. Lyapunov exponent spectra A; > A, > A; versus the bi-
furcation parameter r for Eq. (A1), (a) for the same value of I as

in Fig. 1(a); (b) an enlargement of the part of (a) over the inter-
val of r €[0.0016,0.0017 ] which is marked in (a).
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ESTIMATING TOPOLOGICAL ENTROPY
FROM THE POINCARE MAPS

Topological entropy is another characteristic exponent
that indicates the complexity of a dissipative system. A
possible way of defining the topological entropy H(f) of
a map f is given by [7,8]

H(f)=lim,,_, ]aN(f™)/m , (1)

where N(f™) denotes the number of fixed points of the
mth iteration of f. To compute topological entropy, we
numerate the number N(f™) of the period-m orbits for
an associated Poincaré map f (or the number of fixed
points of the mth iteration of the map f).

Case 1. For any integer n =3, let f be the Poincaré
map and possess a superstable period-n orbit. Namely,
the kneading sequence [9] of the Poincaré map f takes
the following form:

cR(L)" ™2, ()

Here, c¢ denotes the critical point of the Poincaré map f.
The n superstable periodic points give the following Mar-
kov partition [10] on the interval A=[f2(¢c), f(c)]:

a=[fXe),fA)), a=[f¥e)hf%o)], ...,
an—2:[fn_1(c)9c]) an—lz[cyf(c)] ’

where f"(c)=c, The orbit starting from any initial point
will approach and stay on the interval,
A=aUa,U -+ Ua,_;. [For example, Fig. 5(a) shows
a Poincaré map with a superstable period-6 orbit and a
kneading sequence cR(L)*.] In this case, the Poincaré
map f acts on these intervals, a;, a,,...,a,_, in the
following fashion:

fra—a,

Ay,— 0y

Ay >0,
a, _—ata,+ - t+a, ,ta, .

This transformation can be represented by a transition
matrix [10]

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
A=
0 0 o ... 0 1
1 1 1 1 1 J(n—1x(n—1)

(3)

The transition matrix A4 =[A4;] is constructed with
A4;=1if f(a;)Daj, and zero otherwise. The characteris-
tic equation of matrix A4 is given as follows:

ATTI—AnT2— s —A—1=0. @)

The number of the period-m orbits of the map f is
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FIG. 5. Poincaré maps obtained by integrating Eq. (A1). (a)
for I=3.281 and r=0.004 25, showing a Poincaré map with su-
perstable period-6 orbit and the kneading sequence cR(L)*; (b)
I=3.281 and r=0.00165, showing a Poincaré map with a
kneading sequence cR(L)*R.

governed by the following recursive relation (for more de-
tail, see Ref. [11]):

N(fm):N(fm_l)+N(fm~2)+ N +N(fm—(n——1)) ,
m=n,n+1,... . (5)

Particularly, for n =3, recursive relation (5) gives the Fi-
bonacci numbers. Let A,A,,...,A, _; be the roots of
Eq. 4) and denote A_,,=max{A,A,,...,A,_;}. Then
the number N(f™) of the period-m orbits of f meets the
following relation [11]:

N(fM)=Tr[A™]=AT+AS+ --- +A0_,,
m=12,.... (6)
The topological entropy H(f) is given by
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H(f)=lim,,  JIaN(f™)/m
mo AT +AT+ - - +AT_ /m
=InA,,, - (7

=lim

Case 2. Let g be a Poincaré map and have the following
kneading sequence:

¢R(L)"?R . (8)

[For example, Fig. 5(b) shows a Poincaré map that
possesses a kneading sequence cR(L)3R.] In this case,
the corresponding transition matrix B takes the following
form:

0 1 1 0 <o 0 0
0 0 0 1 <. 0 0
B=1o o o o -~ 0 1 s
0 0 0 0 .. 0 1
1 1 1 1 e 1 0 nXn
and with the characteristic equation
17"—217”_2— <. —2172—277=0 . 9)

The number of fixed points of the mth iteration of the
Poincaré map g is governed by the following recursive re-
lation:

(@)
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N(g™)=2N(g™ "2)+2N(g™ )+ --- +2N(gm "7V,

m=n,n+1,.... (10)
Let 7,75 ...,m,, be the roots of Eq. (10), and
Nmax = MaxX{N, My, - - -, M, };  then,  N(g™)=ni"+n7
+ + -+ +n;". Thus, the topological entropy H(g) is given
by

H(g)=lim,,  InN(g™)/m

=lim,,_,  In(n7"+n7'+ -+ - +97)/m

=Inm.y - (11)

We note here that, in the bifurcation process schema-
tized in Fig. 1(a), the value of the parameter r responsible
for the presence of the kneading sequence cR (L)" 2R is
located between the values of » responsible for the knead-
ing sequences, cR(L)" ! and cR (L)".

TOPOLOGICAL ENTROPY AS A DIAGNOSIS
FOR CRISIS

From formulas (7) and (11), we can estimate the topo-
logical entropy for certain values at which the associated
Poincaré maps have the kneading sequence (2) or (8).

For r >r,, the system undergoes saddle-node bifurca-
tions at r;,r4,...,rs; for r <r,, the system undergoes
(inverse) saddle-node bifurcation at r; =0.001 6325 and

FIG. 6. Topological entropy H versus r for

T T T
0.0086 0.008 0.010

r

T T
0.000 0.002 0.004

(b)

0.70

1

0.66 0.68
] |

0.64

0.60 0.62

Eq. (A1), (a) for the same value of I as in Figs.
1(a) and 4(a); (b) an enlargement of the part of
(a) over the interval of r&[0.00163,0.0019],
shows a sudden discontinuity in topological
entropy at r,=0.001 673.
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r3 =0.001 52, at which the system generates superstable
period-4 and superstable period-3 orbits.

At each saddle-node bifurcation point, topological en-
tropy H can be computed from Eq. (7). At r=0.001 652,
r=0.00167 (<r,, slightly), and r=0.001676 (>r,,
slightly), the corresponding Poincaré maps have the
kneading sequences

¢R(L)’R, cR(L)’R, c¢R(L)“R ,

which take the form of Eq. (8). So, the topological entro-
py at »=0.001 652, 0.001 67, and 0.001 676 can be calcu-
lated from Eq. (11).

Figure 6(a) shows the topological entropy H versus the
bifurcation parameter r for Eq. (A1); Fig. 6(b) is an en-
largement of Fig. 6(a) over the interval of
r €[0.001 63,0.0019]. These plots illustrate that the to-
pological entropy H versus r has a discontinuity at the
crisis point (r =r,). It implies that the complexity of the
dissipative system suddenly changes at the crisis. Before
the crisis (» >r.) and as r decreases, the topological en-
tropy H monotonically increases, which is associated
with the increase in the period of superstable orbits; after
the crisis (» <r,) and as r decreases, the topological en-
tropy H monotonically decreases. Both the bifurcation
diagrams in Fig. 1 and topological entropies in Fig. 6
show that, before and after the crisis, the dissipative sys-
tem evolves in opposite bifurcation processes, and the
two opposite processes collide with each other. The col-
lision of two opposite bifurcation processes with quite
different complexities then causes the crisis.

A collision of two opposite bifurcation processes with
different system complexities leading to a crisis can also
be seen in Eq. (A2). Figure 3(a) is the bifurcation dia-
gram for Eq. (A2). Figure 7, obtained for Eq. (A2), shows
topological entropy versus the bifurcation parameter
8k,c- Both Fig. 3 and Fig. 7 show that a crisis occurs at a
value of gx -=10.3625. On the right and left of the
crisis, there exist two opposite bifurcation processes. Fig-
ure 7 shows that a discontinuity in the topological entro-
py occurs at the crisis, and that as these two bifurcation
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FIG. 7. Topological entropy H versus g ¢ for Eq. (A2), with
the same value of A, as in Figs. 3(a) and 3(b), shows a sudden
discontinuity in dynamical complexity at g - =10.3625.

processes collide the system takes on quite different
dynamical complexities. This gives another example of
how two opposite bifurcation processes with different
dynamical complexities (different topological entropies)
can collide to bring about a crisis in a dissipative system.

A SCALING RATIO SEQUENCE
FOR A PERIOD-ADDING SEQUENCE

To account for the above crisis mechanism, we consid-
er a scaling sequence for a period-adding sequence that
appears in the evolution of dissipative systems. For ex-
ample in Fig. 1(a), for > r_, there undergoes a series of
saddle-node bifurcations at r3 r4, . . .,75. These saddle-
node bifurcations are associated with a period-adding se-
quence, superstable period 3,4, ..., 15.

Generally, we suppose that such a period-adding se-
quence will extend infinitely in a dissipative system, and,
the sequence of saddle-node bifurcation values is given by

(ri}izs - (12)
Consider the ratios,
8:=(Viv2a= Vit 1)/ Wig1—vi), 1=3,4,.... (13)

We call sequence (13) the scaling sequence of the period-
adding sequence, and call lim;_, 8, the scaling number of
the period-adding sequence. Elsewhere [12] we have ob-
tained a period-adding scaling sequence

(8, =(i—2)/i}, (14)
with a scaling number,
6=lim; , . §,=1. (15)

We conjectured that, like the Feigenbaum scaling num-
ber, the scaling ratio sequence (14) and the scaling num-
ber (15) of the period-adding sequence are universal in
dissipative system evolutions [13].

For example, the sequence {r;}!2, gives the first 11
terms of the scaling ratio sequence associated with the
saddle-node bifurcations schematized in Fig. 1(a):

8,=0.390957, §,=0.5306, 55=0.6795,
8s=0.7547, 5,=0.825, 5,=0.8485,
8,=0.8571, 8,,=0.875, &,,=0.881,
8,,=0.919, §,;,=0.9294 ,

(16)

and, from 85 on, the terms of the sequence (16) almost
coincide with the corresponding terms of sequence (14).
One can imagine that, in Fig. 1(a) and for r slightly less
than r,, if the system possesses the same topological en-
tropy (the same dynamical complexity) as that of before
the crisis (r <r,, slightly), the system will smoothly
evolve from one bifurcation process to the opposite bifur-
cation process. That is, if for r slightly less than 7, the
system generates a superstable period-15 orbit, the
dynamical complexity will match with that for r slightly
greater than 7., and the system may get rid of the crisis at
r.. To support this point, we present a bifurcation dia-
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FIG. 8. Bifurcation diagram, obtained by integrating Eq.
(A1) for I=3.375, shows that the system of Eq. (Al) can
smoothly evolve from one bifurcation process to the opposite bi-
furcation process.

gram shown in Fig. 8 by integrating Eq. (Al) for
I=3.375. This diagram gives an example of how the sys-
tem can smoothly transfer from one bifurcation process
to the opposite bifurcation process. Over the interval of
r€[0.0054, 0.0073], the two opposite bifurcation pro-
cesses collide with each other, but no crisis occurs. The
reason for this is that the dynamical complexities (or to-
pological entropies) on the right and the left bifurcation
process are matchable. As seen in Fig. 8, both the right
and left bifurcation processes generate superstable
period-5 orbits as they collide with each other over the
interval of r €[0.0054,0.0073].

Since the scaling sequence (16) associated with the
(right) period-adding process in Fig. 1(a) is universal, the
left (r <r,) bifurcation process in Fig. 1(a) should evolve
at the same rate as described by the scaling sequence.
Suppose the left bifurcation process in Fig. 1(a) can keep
evolving at the same rate. In this process, for what value
of the parameter r the system will undergo a saddle-node
bifurcation that generates the superstable period 15?7 In
other words, for what value of r the topological entropy
in the left bifurcation process will match with that in the
right bifurcation process near the crisis? Using the scal-
ing sequence (16), we can obtain an approximate value r*
at which the left bifurcation process will undergo a
saddle-node bifurcation and generate superstable period
15. The value of r* is estimated as follows:

r*:r: +r;’4{83+8384+ s +8384 ce 813}
=0.00177373,

where r3,=ri—r3. However, this value is much
greater than the real crisis value r =r,. This implies that
a premature collision of two opposite bifurcation process-
es occurs, and that the complexities of the two opposite
bifurcation processes are not matchable. This collision
then brings about the crisis at » =r,.

In conclusion we have shown that the topological en-
tropy H of a dissipative system has an apparent discon-
tinuity at some interior crises, and that the occurrence of

such an interior crisis is due to the collision of two oppo-
site bifurcation processes with quite different complexi-
ties. The discontinuity in the topological entropy of the
associated Poincaré map means a sudden change of the
dynamical complexity in dissipative systems. The topo-
logical entropy is one of key characteristic statistical
behavior in a dissipative system. We therefore believe
that the discontinuous change in the topological entropy
is sufficient for such an interior crisis and indicates the
occurrence of the crisis in a physical dissipative system.
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APPENDIX

The Rose-Hindmarsh model is three differential equa-
tions [14]:
dx /dt=y —ax*+bx*+I1—z ,
dy /dt=c—dx*—y ,
dz/dt=r[S(x —x,)—z],

(A1)

where ¢ is time, x represents membrane potential, y is a
recovery variable, and z is the adaptation current. I, ap-
plied current, and r are control parameters. In the above
equation, a, b, ¢, d, S, and x, are constants. We here use
the values ¢ =1.0, »=3.0, c=1.0, d=5.0, $=4.0, and
x;=—1.6.

The Chay model consists of three differential equations
[15]:

dV /dt =1800m > h  (100— V)+1700n*(75— V)

+gx cC/(1+C)(—40—¥)+7(100— V) ,
dC/dt=27{m3 h (Vc—V)—0.1833C} /100 ,
dn/dt=0n,—n)/7, ,

(A2)

where V is the membrane potential, C the dimensionless
calcium concentration, and n a probability of activation.
Let y stand for h, m, or n, then the explicit expressions
for h ., m_,and n_ can be written as

Vo =a,/(a,+B,)

with
a, =0.07 exp(—0.05V —2.5) ,
B,=1/[1+exp(—0.1V —2)] ,
a, =0.125+V)/[1—exp(—0.1V —2.5)] ,
B..=4exp[ —(V+50)/18],
a,=0.01(204+ V) /[1—exp(—0.1¥ —2)] ,
B, =0.125exp[ — (¥ +30)/80] ,

and
T, =1/[A (@, +B,)],

gk, c and A, are the system parameters.
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